
UNCLASSIFIED

AD 4 07 6'24

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



tA

MA 4 S A~ CHUSETTS INSTI T(UF 01' T F t4

LINCOLN 'LABORATORY

LG
A SI1Mg'L METHU )H )11, . 3!ING

AA LIPTICAL POLARIR~~ X ~lWV

i,-,n H. Kessler

?8 may~ 1963

The ~ roi)( ried ri this docunien pf-'--med z
a center for researc operated by M fs. ri etts Ir
Vith the joit support o f the U.S. Anny, Na'vry 9d Air, A-r
Conrct- AF -1L9(6218)-5OO.



NOTICE: When government or other drawings, spec'.-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formmlated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
o'- permiqsion to manufacture, use or sell any
patented invention that may in any way be related
thereto.



When issued, this document had not been reviewed or released

for public dissemination by the appropriate govemmentagency.

Reproduction or distribution for official government use is

authorized. Other reproduction or distribution requires written

authorization by Lincoln Laboratory Publications Office.

Upon notification of release, this page may be removed.

DDC

JI~IA



149

ABSTPACT

This paper shows a procedure that was used to

find the differential phase shift between the two

orthogonal T11,0 modes that synthesize an ellipti-

cally polarized vave in a modified square vaveguide

by deriving simple algebraic expressions for the

cut-off vavelengths of the two modes. The results

achieved indicate that the approximtions caused

less than 1.5 percent error over the applicable

:range of interest.
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A SIMPLZ MTHOD FOR DESIGNING

AN ELLIPTICAL POLARIZER IN 8QUAIM WAVEGUIDE

It is generally known that a square waveguide can propagate an elliptically

polarized wave and that this wave can be analyzed as two spatially orthogonal

, 0mode ie p a

A comon problem is to transform a single TE1, 0 mode into an elliptically

polarized mode. A device that does this is called an elliptical polarizer. One

possible approach for constructing an elliptical polarizer is a square vaveguide

in which two diagonally opposite corners have been cut off.

gV

Figure 1

Electric Field Vector Incident on a Modified Square Waveguide
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A wave in the TZl, 0 mode incident upon the polarizer as shown in Fig. 1

can be considered to be made up of two components, one having its electric

field, E/p parallel to the cut corners (as in Fig. 2a), and the other having

its electric field, EZ, perpendicular to the cut corners (Fig. 2d).

The phase velocity of each orientation or mode is different because the

boundary conditions are geometrically different. Therefore, a difference in

phase will result as the two modes travel through the polarizer.

As an example, a circular polarizer can be made by adjusting the height

and length of the corner ridges to give a 90P difference in phase between the

two components over the length of the polarized section. To accomplish this,

the cut-off wavelengths of the two modes must be known in the region of the

modified corners.

The cut-off wavelengths can be determined by using a calculus of varia-

tions technique. (2) This paper will demonstrate a less formidable approach

that gives very simple algebraic formulas, usable with negligible error for

most design problems.
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Fig. 2. The Electric Fields of:

(a) The 1// mode of the polarizer
(b) The tZOiangulr section of (a) and (c) chosen for solution
(c) The TI 1 1 mode perturbed by four square-corner bars
(d) The EA mode of the polarizer
(e The triangular section of (d) and (f) chosen for solution
(fj The TEl,1 mode perturbed by a square axial bar

3



Consider the solution for the E//mode indicated in Fig. 2a. The fields of

this mode will be undisturbed by an electric vall passed corner to corner and

perpendicular to the electric field lines. Similarly, a magnetic wall can be

placed through the other two corners parallel to the electric field. It is

then necessary to consider only that triangular portion of the original square

waveguide bounded by the electric wall, the magnetic wall, and one of the ini-

tial walls.

One of these triangular sections is shown in Fig. 2b. Because its fields

and geometry are identical with those in the waveguide of Fig. 2a, it will

therefore have the saw cut-off wavelength.

The larger square waveguide of Fig. 2c, shown propagating the TEI, 1 mode,

has the same cut-off wavelength as does the small triangular aveguide of

Fig. 2b. This can be seen by observing that magnetic walls can be passed

center to center through opposite walls of the waveguide in Fig. 2c, and that

electric walls may be placed corner to corner without disturbing the fields of

the TEl, 1 mode. When that has been done, the fields within a triangular section

formed by a magnetic wall, an electric wall, and part of the original waveguide

wall, will be identical with those of the small triangular section of Fig. 2b

(which was itself derived from the E// mode of Fig. 2a). Therefore, the cut-

off wavelength of the E// mode in Fig. 2a is the same as that of the TE1,1 mode

of Fig. 2c. Also, the two cut corners shown in Fig. 2& correspond to the four

square bars pictured in Fig. 2c. The effect of these bars upon the cut-off

wavelength will be determined by perturbation theory.

Perturbation theory deals with 4he change in the resonant frequency of a

cavity that has had a small volumetric change. It may be said that the cut-off

frequency is of interest here and not the resonant frequency. However, if the

waveguide is operated at its cut-off frequency, it is possible to make use of
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the fact that the waveguide is in resonance, and therefore its cut-off fre-

quency and resonant frequency became synonymous.

Reasoning similar to that used above holds for the 31 mode of Fig. 2d, but

now the cut corners correspond to a single bar placed axially in the larger

waveguide carrying the TEl, 1 mode.

Consider now a unit length of the vaveguide of Fig. 2c, supporting the

TEl,1 mode at its cut-off frequency, to be a resonator. Then, the change in

resonant frequency, Mt, arising from the perturbation caused by the four bars,

can be obtained by rewriting Slater's perturbation theorem, as

M M -&uH (1)
o H

The unperturbed resonant frequency is fo; A% and W.K are the peak electric and

magnetic energies over the perturbation, respectively, and U° is the total stored-

energy in the resonant structure. In the region of the perturbing rods,

aUH> E"

1 2
pH u V!Av, (2)

where AV is the perturbing volume. With the proper choice of origin,

H M Bcos (Ex-) cos (U) (3)

where the quantity B is an arbitrary constant. If AV is small, then H will be
z

fairly constant in that region and 1UH can be approximated by evaluating Hz at

the point,

b

x a " , ()

u --2 2Vb 2B2  [1 -(lb)2] . (5)

&UH 2&



The total energy stored at resonance can be found from the peak magnetic field,

U 0  1 dxdy _1 VB2a2. (6)

Note that the energies are evaluated per unit length in the axial direction.

This is possible because at cut-off the fields in the axial direction remain

constant. Using Eqtiations (i) through (6),

Also,

fo Ao (8)
o o

where 6% is defined as,

&%= (X )E1 - X 0 (9)

The quantity (Y)# is the cut-off wavelength of the perturbed TE mode and

therefore also of the E// mode; X° is the cut-off wavelength of the unperturbed

TEl, 1 mode, and in a square waveguide a9 on a side,

- 2a. (10)
0

Using Equations (7) through (10), the cut-off wavelength of the E// mode of

Fig. 2a becomes,

(,. )
4(11)2 +JT(11))2a l-a(-)2 ,n- .

A graph of Equation (11) appears in Fig. 3.
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The solution for the cut-off wavelength of the BL mode of Fig. 2d is

similar to that for the Z, mode. However, it must be remembered that now the

perturbing volume is one axial bar, as shown in Fig. 2f, instead of the four

corner bars used in the E// calculations. Also, W E >> UH; and,

- 1 a[ + Z2] av, (12)

where

Z , B coS (-) sin (', . (13)

The quantity 6U can be approxinated by evaluating Ex and Ey at the point

a b
x Y M - . (l4)

At this point,

x(15)

Using Equations (12) through (15),

1JABP-b2 (icb)2 (6

and, from Equations (1), (6), and (16),

Af2 b 4

me - -' T (17)
f0 2

Substitution into Equations (7) through (9) leads then to the cut-off wavelength

of the E mode,

.- +- b (!()
2a 2 W

7



A plot of Equation (18) appears in Fig. 3.

Equations (11) and (18) agree very well with results obtained by applying

calculus of variations to the problem. The results fron the analysis used here

have less than 1.5 percent error for (,.) in the region 0 < 0.36, andcYE// a

less than 0.75 percent for ( ) over the same region. The approximation for

EL is fairly good in the range beyond (b/a) - 0.36, but the approximation for
E// falls off rapidly after that, having 6.6 percent error at (b/a) - 0.4. How-

ever, a larger value of (b/a) would be undesirable for most applications, because

such a large change in waveguide shape would give impedance matching problems and

tend to generate and propagate higher order modes.

Since this device will function as a polarizer, the difference in phase be-

tween the two orthogonal modes, E// and EL , over a length, 1, of a square wave-

guide with triangular corner sections is of importance, and will be called the

differential phase shift, "D'

eD . l 8/ 21[ 1] (19)
g// 91x

where the phase shifts, / and e , and the guide wavelengths, X and X ,
9// g.L

refer respectively to the E/ and E modes. A plot of Eq. (19), the differential

phase shift, as applied to the flat ridge section appears in Fig. 4. In Figs.

4 and 5 the quantity a (voltage attenuatk n in nepers per meter) having a non-

zero value simply shows that one of the modes has reached a cut-off condition.

The construction of this device in practice necessitates the addition of

tapers to each end of the triangular ridge sections to provide an acceptable

impedance match. It therefore becomes important to know how much phase shift

these tapers will add in addition to that of the flat corner sections. This can

be determined experimentally by choosing a reasonable length for a set of tapers
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Fig. 4. Norm~alized differential Phase shift for a set of flat ridge sections.
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and building a model so that the total differential phase shift of the device

can be measured. The differential phase shift of the tapers can then be found

by subtracting the phase shift of the middle untapered section, as computed

from Eq. (19), from the total measured differential phase shift.

It is then possible to construct a polarizer with any desired amount of

phase shift using the tapers Just measured and a new middle untapered section

designed from Eq. (19) to provide the remainder of the required phase shift.

The exact phase shift of the tapered sections can be expressed mathemati-

cally by considering the following analysis for linear tapers.

In Eqs. (11) and (18), if the quantity, b, is replaced by the quantity

(bx/L), where x is now the length parameter that is variable, and L is the

length of the tapers, the cut-off wavelengths of the two modes, 3 and . , as

a function of the position along the tapers, x, become

il bx 2 2(bx9 41
(X.) 2& -a(Lj) + 2L1 ' (20)

and

(X )x 2a i + 112(X) 4

.1.

The total phase shift for each orientation is then

# , 2v S. ,. 0 2 dx, (22)
-aLx)2 +2,bxl

&L aL

and

O .a!% dx. (23)
2. 1 + L- ( )

21
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The integration of Equations (22) and (23) was performed numrically by

computer techniques. The results obtained for the total differential phase

shift, OD, for a Set of linear tapers of length, L, are plotted in Fig. 5.

Lastly, it must be rioted that Figs. 4 and 5 do not take into account a

snall additional phase shift resulting from the change in waveguide impedance

through the phase shifter. Therefore, using Figs. 4 and 5, one can completely

design a phase shifter that will yield a result very close but not exactly

equal to the predicted values.
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